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Abstract

Systemic involvement and comorbidities are common in chronic obstructive pulmonary disease (COPD). They add
to the burden of disease and are associated with significant disability and mortality. These include cardiovascular
disease, mood disorders, anemia, cachexia, skeletal muscle dysfunction and bone pathology. In this article, we
review the pathophysiology, diagnosis and treatment of two such comorbidities, osteoporosis and sarcopenia, as
they relate to patients with COPD.

Introduction
Chronic obstructive pulmonary disease (COPD) is a
multisystem disorder, characterized by involvement of
multiple organs in addition to the lungs [1]. The inflam-
matory state inherent to the lung pathology in COPD is
thought to be the root cause of this multi-organ dys-
function. Furthermore, it is likely that this state contrib-
utes to the development and acceleration of comorbid
conditions seen in COPD patients at higher frequencies
when compared to the general population.
Currently, the delineation between a systemic feature

and comorbidity of COPD is not well defined. Skeletal
muscle dysfunction, cachexia, osteoporosis, coronary
artery disease, congestive heart failure, anemia, meta-
bolic syndrome, depression and anxiety are all frequently
encountered in COPD patients. What is clear, however,
is that all of the above lead to morbidity and mortality
and need to be identified and addressed by the physician
taking care of a COPD sufferer.
In this chapter, we will review osteoporosis and sarco-

penia in patients with COPD.

Review
Osteoporosis in COPD
Osteoporosis is a silent “skeletal disorder characterized
by compromised bone strength predisposing to an in-
creased risk of fracture. Bone strength reflects the inte-
gration of two main features: bone density (in turn
determined by peak bone mass and amount of bone

loss) and bone quality (a function of bone architecture,
turnover, damage accumulation and mineralization)” [2].
At present, except for markers for bone turnover, few

indicators exist to concretely describe measures of bone
quality. Hence, bone density remains the principal
method to define osteoporosis. As per the World Health
Organization criteria, a bone mineral density (BMD)
score, measured by a dual energy X-ray absorptiometry
(DXA) scan, that is 2.5 times or more below the stand-
ard deviation (T score of −2.5 on the DXA bone scan)
for a young normal population is used to define osteo-
porosis; a BMD score between −1 and −2.5 is indicative
of osteopenia (low bone mass) [3].

Epidemiology
Osteoporosis is the commonest bone disorder to afflict
humans [4]. Roughly 10 million Americans have osteo-
porosis and a staggering 43 million have osteopenia,
placing them at risk for fractures [5, 6]. Worldwide, the
number of people with osteoporosis is estimated at 200
million [7]. With aging populations, the incidence and
burden of osteoporosis and fractures are projected to get
significantly worse [8].
Caucasian women constitute the largest at-risk group

for osteoporosis; by age sixty, half of them suffer from
osteopenia and one in two have an osteoporosis related
fracture in their lifetime [4, 9]. However, both genders
and all races are affected by the disease.
Despite the preponderance of men in the COPD popu-

lation, osteoporosis is more common in COPD patients
when compared to age matched controls without airflow
limitation [10]. Roughly one-third of patients with
COPD have osteoporosis (range 9–69% - the wide interval
reflecting differences in methodology and demographics
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of the study population, as well as the severity of disease
in the various studies) and about 38% have osteopenia
(range 27–67%) [10, 11]. The increased prevalence of
bone loss and osteoporosis places COPD patients at a sig-
nificant risk of developing fractures, especially vertebral
compression fractures [12, 13] and hip fractures [14].

Pathophysiology
Normal bone homeostasis The skeletal system is in a
constant state of flux. Bone remodeling and resorption
occur continuously to preserve the integrity of bone
structure [15]. Osteoclasts, osteoblasts, and osteocytes,
under the control of vitamin D, parathyroid (PTH) and
gonadal hormones, are responsible for this process
(Fig. 1). It is estimated that up to 25% of trabecular bone
(the spongy bone located at the ends of long-bones and
in vertebrae) and 3% of cortical bone (located in the
shaft) are replaced every year [16, 17].
Osteocytes are cells that are embedded in the bone

matrix. They detect microdamage, caused by mechanical
fatigue, in the bones and initiate bone remodeling by
interacting with osteoclasts and osteoblasts.
Damaged bone is resorbed by osteoclasts. These are

multi-nucleate giant cells, from the monocyte/macro-
phage cell line, that secrete hydrolytic enzymes, including
cathepsins and matrix metalloproteinases. Osteoclasts also
secrete hydrogen and chloride ions. The resultant acidic
environment aids bone resorption; it also activates the
proteolytic enzymes, leading to breakdown of collagen/
matrix of the compromised bone. Osteoblasts, derivatives
of mesenchymal stem cells, then complete the remodeling
process by making new bone –both the organic matrix
and mineral– at the damaged site.

Two signaling pathways, osteoprotegerin (OPG)/recep-
tor activator of nuclear-factor kappa B(RANK)/ receptor
activator of nuclear-factor kappa B ligand (RANKL), and
Wnt/β-catenin system, are important in regulating bone
metabolism. RANKL, expressed on the surfaces of osteo-
blasts, bone stromal cells and activated T cells, binds with
RANK present in osteoclast progenitor cells’ cellular mem-
branes and promotes maturation to osteoclasts; it also in-
hibits osteoclast apoptosis [18]. Bone resorption is thereby
enhanced. OPG, also made by osteoblasts and bone stro-
mal cells, inhibits these processes by binding to RANKL
and preventing it from adhering to RANK [19, 20].
The Wnt/β-catenin signaling system promotes bone

formation. It does this by a number of mechanisms: by
promoting preferential differentiation of mesenchymal
stem cells to osteoblasts rather than adipocytes, by inhi-
biting osteoblast apoptosis, and by increasing the levels
of OPG.

Osteoporosis in COPD An imbalance in the processes
of bone resorption and formation, either excessive
resorption or decreased bone formation, leads to osteo-
porosis. A number of changes, leading to this imbalance,
have been observed in COPD patients with osteoporosis:

� Elevated levels of RANK and RANK/OPG ratio [21]
� Upregulation of RANKL [21]
� Lower levels of OPG [22]
� Decreased activity of Wnt/β-catenin signaling [23]
� Elevated levels of matrix metalloproteinases [24]

The inflammatory milieu observed in COPD patients,
especially the emphysema phenotype, is thought to

Fig. 1 Simplified diagram representing normal bone homeostasis. OPG = osteoprotegerin, RANK = receptor activator of nuclear-factor kappa-B,
RANKL = receptor activator of nuclear-factor kappa-B ligand, Wnt/Bcat =Wnt/β-catenin
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contribute to these changes, particularly the OPG/
RANK/RANKL axis. Interleukin-1 (IL-1) and tumor ne-
crosis factor-α (TNF α), levels of which are significantly
increased in COPD (along with IL-6), favor RANKL ac-
tivity and promote osteoclastogenesis and, ultimately,
osteoporosis [25, 26]. The degree of radiolographically
evident emphysema is directly correlated to lower levels
of BMD in COPD patients [21].
In addition to the above, various other factors promote

osteoporosis in COPD patients. These are described below.

Use of corticosteroids
Corticosteroids, inhaled and systemic, affect all three
major cells involved in bone homeostasis, tilting the bal-
ance in favor of bone resorption and increasing the risk of
fractures. They decrease levels of OPG and enhance ex-
pression of RANKL and monocyte/macrophage-colony
stimulating factor (M-CSF) – M-CSF, similar to RANKL,
stimulates osteoclastogenesis [27–29]. By inhibiting the
Wnt/β-catenin pathway, they also decrease the prolifera-
tion, differentiation and maturation of osteoblasts; bone
formation is decreased resultantly [30, 31]. Lastly, cortico-
steroids adversely affect the ability of osteocytes to detect
microdamages and make bones more susceptible to frac-
tures [32]. Osteocyte apoptosis is promoted, making the
bones harder, less vascular and more brittle [33–35].
Steroids, in inhaled or systemic form, are used for spe-

cific indications in COPD patients.. Inhaled corticoste-
roids (ICSs) decrease the frequency of exacerbations and
improve quality of life in moderate-to-severe disease
[FEV < 60%] [36–39]. Systemic steroids are the corner-
stone of therapy in COPD exacerbations and decrease
their duration, improve symptoms and prevent relapse
[40–45]. However, use of steroids comes at a cost with
significant adverse effects, including osteoporosis and
fractures. Systemic steroid usage is a predictor of de-
creased BMD and fracture occurrence [46–48]. The risk
is dose dependent, with the highest risk of fractures in
the first three to six months after initiation of therapy,
and resolution of the risk within one year of treatment
cessation [49].
The correlation between ICSs and reduced BMD and

fractures is less clear. One long term follow-up of high
dose triamcinolone [50] and a systematic review of ICSs
revealed lower BMD and a modest increase in fractures
respectively [48], but other studies have not corrobo-
rated this evidence with high dose ICSs [51–53]. Inter-
estingly, at low doses, ICSs may prevent osteoporosis in
COPD patients by decreasing the systemic inflammatory
milieu [54].

Vitamin D deficiency
Low levels of vitamin D cause a drop in serum calcium
[55]. A compensatory elevation of PTH occurs leading

to production and release of calcitriol from the kidneys;
calcium levels are normalized by the actions of calcitriol
on the gut and the bones [56]. Calcitriol induces RANKL
expression on osteoblasts and hence leads to excess re-
sorption of the bones [and release of calcium]. The re-
sultant normalization of serum calcium suppresses PTH
production from the parathyroid gland. With vitamin D
deficiency, this homeostatic control is lost; unchecked
PTH release and its action lead to osteoporosis.
Vitamin D deficiency, defined as serum 25-hydroxyvitamin

D levels of < 20 ng/ml [57], is quite prevalent in COPD.
There are many reasons for this, including poor dietary in-
take, decreased 25-OH D production from senescent skin
(a result of smoking), poor sunlight exposure due to
COPD induced functional and mood impairment, renal
dysfunction and steroid use [58]. Up to two-thirds of
COPD patients can have a vitamin D deficiency, and the
prevalence increases with the severity of airflow limitation
(approximately 40% in GOLD stage I, rising to ~80% in
GOLD stage IV) [59–61].
Lastly, vitamin D deficiency increases the risk of frac-

tures due to its beneficial effects on balance and muscle
strength [62]. Vitamin D supplementation in elderly
patients with deficiency, especially in conjunction with
calcium, results in a lower risk of falls and fractures [63].

Hypogonadism
The human sex hormones play an important role in
maintaining skeletal integrity in the adult, by promoting
bone formation and inhibiting resorption [64, 65].
Estradiol, in particular, is clearly implicated, with low
levels being strongly associated with bone loss and frac-
tures [66, 67]. Hypogonadism is common in COPD pa-
tients, various studies indicating a prevalence rate range of
22–69%, and is associated with osteoporosis and muscle
weakness [68].

Reduced body mass index, fat free mass, sarcopenia and
reduced physical activity
Mechanical loading plays an important role in maintain-
ing bone mass and integrity [69]. The osteocyte network
senses and transduces strain to the effector cells, osteo-
clasts and osteoblasts, to decrease bone resorption and
enhance bone formation at sites where more strength is
required to counter stress. Decreased mechanical stress,
as occurring in low gravity, disuse and reduced physical
activity, lead to bone loss [70–73].
The reduced mechanical load on bones that occurs

with decreased body mass index [BMI], fat free mass
[FFM] and with sarcopenia, can reduce bone formation.
Physiological derangements in body composition are
common in patients with COPD, with a high prevalence
of low BMI, and low FFM [cachexia], and sarcopenia
(reduced muscle strength and mass). Up to a third of
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COPD patients suffer from low BMI, low FFM or sarco-
penia [74, 75]. A significant correlation with osteopor-
osis has been observed in patients with COPD and
sarcopenia, low BMI or low FFM [76, 77]. Besides a
decreased mechanical load, other factors that may link
osteoporosis and sarcopenia/low FFM/low BMI are
vitamin D deficiency, inflammatory mediators, genetic
factors, and the use of corticosteroids.
Sarcopenia is also related to impaired physical mobility,

physical ability and falls with a higher risk of fractures [78].

Anemia and hypoxia
Hypoxia, by inhibiting stem cell differentiation into
osteoblasts via decreased expression of transcription
factor (Cbfa-1/RUNX2), reduces bone formation, while
strongly stimulating osteoclast formation and bone re-
sorption [79, 80]. Anemia is also thought to be associ-
ated with osteoporosis because of the same mechanism,
as a result of anemia induced decreased tissue oxygen
delivery. Both conditions are commonly seen in COPD
patient, especially with severe disease, and are likely to
contribute to COPD associated osteoporosis [81–83].

Others
Hypercapnia: A significant proportion of COPD patients
have chronic carbon dioxide retention [84]. As expected,
more severe airflow limitation (with reduced FEV1 and
high airway resistance) is associated with hypercapnia.
Elevated carbon dioxide levels, even in the absence of
acidosis, are potent stimulators of osteoclast activity and
are associated with low BMD [85].
Smoking: A meta-analysis of over 40,000 subjects indi-

cated that cigarette smoking, the most important risk
factor for COPD, has an independent, dose-dependent
effect on BMD and risk of fractures, that is partially
reversible with cessation of smoking [86]. Smoking
contributes to osteoporosis through a variety of mecha-
nisms, including effects on estradiol activity [87], as well
the as Vit D/PTH axis [88], increased free radicals and
oxidative stress resulting in more bone resorption [89],
and modulation of OPG/RANK/RANKL system [90].
COPD exacerbations: These have been shown to be an

independent risk factor for progression of osteoporosis
[91]. The mechanism involved is likely a combination of
factors discussed above: augmentation of the systemic
inflammatory state during an exacerbation, worsening
hypoxia and hypercapnia, elevated MMP levels, oxidative
stress, use of steroids, and physical inactivity [92].
Age and gender: Older age is a common risk factor for

both COPD and osteoporosis. After reaching peak bone
mass in the middle-to-late twenties, people have gradual,
continuous bone loss as they grow older. This bone
loss is accelerated in women in the peri- and post-
menopausal period [93].

Clinical features and consequences of osteoporosis in COPD
Osteoporosis is asymptomatic unless it is complicated by
a fracture, with its accompanying physical, psychosocial
and financial sequelae. Unlike people with healthy bones,
patients with osteoporosis are susceptible to fractures
from minor mechanical stress or trauma [94, 95]. These
are termed as fragility fractures.
The commonest site of fracture with osteoporosis is the

vertebral column. The thoracolumbar junction (T12-L1)
and mid-to-lower thoracic area (T7–T8) are usually af-
fected in patients with COPD [96]; various studies report
a vertebral compression fracture (VCF) rate of 24–63% in
COPD [13, 97–99]. Other commonly involved areas
include the hip and the ribs.
Fractures are associated with significant morbidity and

mortality in osteoporotic, COPD patients. Vertebral
compression fractures can cause pain and result in
kyphosis, decreased rib cage excursion and lung volumes
[100]; an increased frequency of COPD exacerbations
secondary to an impaired ability to expectorate can
occur with the hypoventilation related to rib fractures
[101]. It is estimated that each VCF is associated with a
9% drop in vital capacity [102]. VCFs also increase the
rate and duration of hospitalization, and are associated
with a worsened health-related quality of life [103, 104].
Worryingly, VCFs often escape detection, especially when
they are not painful (which is the case in a massive 60–
70% of VCF cases), leading to a missed opportunity to
treat osteoporosis and prevent further fractures [105, 106].
Approximately, one in five patients who sustain a VCF
suffer another VCF within a year [107].
Hip fractures have the highest impact on health and sur-

vival among osteoporosis related fractures, especially in
the elderly. They are associated with a significant rate of
death (one year mortality rate of 14–36%, including a 4%
mortality rate for the corrective surgery itself ) [108–110],
as well as a loss of mobility and independence, increased
need for institutionalization and healthcare utilization,
high cost, mood and cognitive impairment, and a higher
risk of subsequent fractures [111]. The risk of death after
a hip fracture is 60–70% higher in COPD patients when
compared to those without COPD [112]. At present, the
exact incidence and prevalence of hip fractures in COPD
is not well studied. However, in two large cohorts, COPD
was found to be associated with a higher risk of hip
fractures (23% for women, 30% for men) and a higher
rate of occurrence when compared to the general
population [113, 114].

Diagnosis
Osteoporosis is commonly missed. Even when result-
ing in fractures, diagnosis and treatment can be over-
looked. Up to a third of VCFs are missed, and even
when fragility fractures are picked up, physicians can
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fail to look for osteoporosis and place patients on ap-
propriate treatment [115–117].
Every patient with COPD should have a risk evaluation

performed by his physician to assess the likelihood of a
future fracture risk. FRAX is a useful tool developed by
the WHO for predicting a ten-year risk of fractures
[118]. It uses ten clinical predictors to calculate this
probability. These include gender, age, height, weight,
and prior or current history of fragility fracture, smok-
ing, corticosteroids use, alcohol consumption, rheuma-
toid arthritis and parental fracture. FRAX can be used
with or without a BMD score. However, it should be
noted that FRAX can underestimate the risk of fracture
in COPD [119–121]. To improve the accuracy of its pre-
diction, a modified FRAX with the addition of severity
of airflow limitation assessed by FEV1, degree of physical
inactivity, and a history of recent fall, has been proposed.
This model, however, has not yet been validated [122].
A diagnosis of osteoporosis is confirmed by demon-

stration of either a low BMD or a fragility fracture of the
hip or spine [123]. Laboratory tests to rule out second-
ary causes of osteoporosis (e.g. type 1 diabetes, hyperthy-
roidism, chronic malnutrition, chronic liver disease etc.)
should be performed if a clinical evaluation is suggestive
of such conditions.
The current gold standard for the diagnosis of osteo-

porosis is the dual-energy X-ray absorptiometry (DXA)
test [124]. This assesses bone mass by measuring bone
mineral density, generally at the femoral neck or lumbar
spine. Areal BMD is calculated by comparing the ab-
sorption by a subject’s bone of two different energy-level
low radiation X-ray beams. It is then compared with
either the BMD of a healthy gender-matched early adult
cohort to obtain a t-score, or (for premenopausal
women, men < 50 years of age, and children) with age-,
gender-, and ethnicity-matched reference population to
obtain a z-score [3]. T-scores of −2.5 or lower, i.e. a
BMD that is 2.5 standard deviations below the reference
population, confirm osteoporosis. Scores between −2.5
and −1 indicate osteopenia, while a score above −1 is
considered normal [125]. When a z-score is used, a cut-
off of −2 is used to differentiate between normal and
low BMD “for expected range for age” [126]. A one
standard deviation drop in score is associated with a
1.5–3 times higher risk of fracture [127]. DXA scans
should be interpreted with caution in individuals with
small body frames or with degenerative disease of the
spine. DXA may overestimate or underestimate the risk
of fractures in these situations respectively [128].
DXA scans are also used for monitoring the progress

of osteoporosis and its response to treatment. These
should generally be performed at 2 year intervals in
otherwise healthy patients with osteoporosis, as DXA is
usually unable to detect significant changes in BMD

earlier than this period [129]. With corticosteroid ther-
apy, osteoporosis is accelerated. Therefore, consideration
should be given to performing DXA scans more fre-
quently, possibly annually, in COPD patients who are
currently or have been on steroids [130].
The presence of a VCF, even when BMD results are not

available, is sufficient to establish a diagnosis of osteopor-
osis [123]. VCFs are diagnosed by lateral thoracic and
lumbar X-rays or by lateral vertebral fracture assessment
on DXA scan [131]. VCFs can often be picked up on chest
X-rays, and should actively be looked for when reviewing
chest imaging of COPD patients [12, 132]. A decrease in
height by more than 4 cm from age 25, should alert the
physician to the possibility of a VCF [133].
Other means of assessing bone strength include biochem-

ical markers of bone turnover, CT-based absorptiometry,
and quantitative ultrasound densitometry [128, 134]. How-
ever, at present, these are not widely available in routine
clinical practice and are mostly used for research purposes.

Treatment of osteoporosis in COPD
The osteoporosis literature focuses almost exclusively on
post-menopausal women and the elderly for obvious rea-
sons. There is a dearth of studies specific to osteoporosis
in the COPD population. Till more data is available for
this population, the management of osteoporosis in
COPD should follow established guidelines for primary
osteoporosis [123].
Physicians should avoid excessive glucocorticoid use,

inhaled and systemic, as a general principle when man-
aging COPD, due to their significant side effects. Inhaled
corticosteroids, in low to medium doses if possible,
should be restricted to patients with FEV1 < 60% with a
history of recurrent COPD exacerbations [37]. High dose
inhaled corticosteroids are associated with a higher risk
of pneumonia [36]. Short duration of systemic cortico-
steroids in medium doses are the preferable treatment
for most patients with an acute exacerbation as out-
comes with such a regimen are similar to doses given for
longer duration [135].

Non-pharmacological interventions
Lifestyle modifications conducive to maintaining bone
strength should be encouraged. Excessive alcohol intake –
daily consumption of more than two drinks for women,
and three for men– can lead to deleterious effects on bone
health and increased risk of fall, and should be discour-
aged; individuals should be assessed for the possibility of
alcoholism and managed appropriately [136]. Fall risk
should be assessed for individual patients and interven-
tions that decrease their risk should be implemented;
strategies include withdrawal of psychotropic medications,
exercise programs [including Tai Chi], and home

Majid et al. COPD Research and Practice  (2016) 2:3 Page 5 of 15



safety assessment and modification by an occupational
therapist [123].
Other lifestyle changes have a positive impact on

both osteoporosis and COPD (Fig. 2). These include
quitting tobacco, improving diet [especially calcium
and vitamin D], and engaging in exercise programs.
Smokers should be enrolled in smoking cessation
programs; tobacco cessation leads to improved re-
spiratory function [137] and modest improvements in
BMD [138]. Exercise programs, especially when per-
formed in a multi-disciplinary setting, confer signifi-
cant health benefits to COPD sufferers, improve
bone density and decrease the risk of falls and frac-
tures [139–142].

Pharmacological interventions
Indications for pharmacological treatment for osteoporosis
in COPD
Treatment for osteoporosis should be considered if
patients with COPD have a history of a fragility frac-
ture or have been using systemic corticosteroids for
three months/year. Other criteria include low BMI
(<21 kg/m2, active smoking, significant alcohol use,
age above 65, rib fracture, physical inactivity, meno-
pause, FEV1 < 50% and parental hip fracture) [143].
Initial therapy should focus on ensuring adequate
intake of calcium and vitamin D with or without add-
itional medications.

Calcium and vitamin D
Calcium and vitamin D play an important part in pre-
venting and treating osteoporosis. As mentioned before,
vitamin D, in conjunction with calcium supplementation,
decreases the risk of falls by improving stability and
strength. Adequate dietary intake of both should be
advised. A combination of supplemental calcium and
vitamin D can decrease the risk of osteoporotic fractures
[144]. The recommended dietary allowance [RDA] for
calcium is 1,000 mg/day for men aged 51–70 and
1,200 mg/day for women above 50 and men above 70
[145]. The RDA for vitamin D is 600 international units/
day for adults aged 51–70 and 800 IU/day for older indi-
viduals. Patients should be encouraged to meet their
RDA through dietary intake (fruits, vegetable, dairy
products fortified with vitamin D, fish, liver); if this
proves inadequate, supplements should be prescribed.
Caution should be exercised with using excessive doses
of both, as there is a risk of toxicity with high doses of
vitamin D [146] and a possible, controversial, link with
renal stones and cardiovascular events with calcium in-
take above 1200–1500 mg/day [147–149]. Daily intake
of up to 4,000 IU/day of vitamin D is generally consid-
ered as a safer upper limit.

Teriparatide
Teriparatide is a biosynthetic form of human PTH. It is
the only FDA approved anabolic treatment of osteoporosis

Fig. 2 Schematic diagram summarizing risk factor assessment, diagnosis and treatment for osteoporosis in COPD. IFragility fracture is defined as a
fracture of the hip or spine; prolonged systemic steroid use duration is defined as 3 months. IIRisk factors include: BMI < 21, active smoking, daily
significant alcohol intake, age > 65 years, menopause, rib fracture, inactivity, FEV1 < 50%, parental hip fracture. Fr Fx = Fragility fracture
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available so far [150]. When used intermittently, teri-
paratide stimulates bone formation by promoting differen-
tiation of osteoblasts from mesenchymal stem cells,
activating preexisting osteoblasts and inhibiting their
apoptosis.
Teriparatide decreases the risk of VCF by two-thirds

and non-VCFs by half in patients with osteoporosis
when given for an average of 18 months [151]. It is
superior to alendronate in preventing osteoporosis in pa-
tients on glucocorticoid therapy [152, 153]. Treatment
duration should generally not exceed two years when
using the medication. Unlike bisphosphonates, its effect
wears off quickly; alternate therapy should be initiated
when stopping teriparatide.
In high doses for prolonged duration, teriparatide in-

creases the incidence of osteosarcoma in animal models.
Its use is hence contraindicated in patients at a high risk
of osteosarcoma, i.e. those with a history of skeletal ma-
lignancy, bone metastases, radiation treatment of bones,
and Paget’s disease.

Anti-resorptive treatment
Bisphosphonates
The most commonly used medications for osteoporosis
treatment, bisphosphonates are synthetic analogues of
pyrophosphates, a naturally occurring substance, with
high affinity for hydroxyapatite in the bone [154].
Bisphosphonates inhibit osteoclast activity by blocking a
key enzyme, farnesyl pyrophosphate synthase, and pro-
mote osteoclast apoptosis, ultimately decreasing bone
resorption [155].
Bisphosphonates have a well-established role in treat-

ing osteoporosis and decreasing the risk of fractures,
particularly VCFs, in post-menopausal women and those
on glucocorticoids [156, 157]. Most bisphosphonates
decrease VCF incidence by 40–50% and non-VCF by
around 20–30%. They also improve lumbar spine bone
density scores in patients with airway disease [158].
Bisphosphonates are generally well tolerated. Gastro-
intestinal disturbance is the most common side effect with
oral formulations. Oral medications should be avoided in
patients who are unable to sit up straight for half an hour
after ingesting the medication, in those with severe upper
gastrointestinal symptoms or with significant esophageal
pathology (e.g. dysmotility, stricture, achalasia). Uncom-
mon side effects include atypical fracures, atrial fibrillation
and osteonecrosis of the jaw [159].

Calcitonin
Calcitonin transiently decreases osteoclastic activity
without affecting collagen synthesis by osteoblasts [160].
Salmon-calcitoinin is available in oral and nasal forms
and decreases the risk of VCFs by about a third with no
significant impact on the incidence of non-vertebral

fractures [161]. It is very much a second line medication,
used for those unable to take bisphosphonates, due to a
small increase in risk of malignancies associated with
the drug [162], and better efficacy of other medications.
Calcitonin may have some use in the setting of acute
osteoporotic fractures due to its adjunctive effect of pain
relief which helps in earlier mobilization [163].

Denosumab
This monoclonal antibody against RANKL inhibits osteo-
blast differentiation, activation and survival, thereby de-
creasing osteoclastogenesis [164]. It decreases the risk of
VCFs by two-thirds, hip fracture by 40% and non-VCFs by
20% [165] and improves BMD in post-menopausal women
[166]. It is superior to most bisphosphonates in its effect
on BMD [167, 168]. Efficacy is greater with combination
therapy of both denosumab and teriparatide [169]. Deno-
sumab is injected subcutaneously every 6 months by a
health professional. Side effects include risk of hypocalce-
mia, cellulitis and skin rash.

Estrogen agonist/antagonist compounds (previously known
as Selective Estrogen Receptor Modulators)
This group of medications binds to intracellular estrogen
receptors, acting as either agonists or antagonists in differ-
ent tissues [170]. In bones, these compounds improve
BMD and decrease the risk of osteoporosis associated
VCFs [171]. They are approved for use in post-menopausal
women.

Duration of treatment and follow-up
The need for continuing therapy should be periodically
re-evaluated intervals due to the risk of side effects with
medications. The risk of atypical femoral fractures and
osteonecrosis of the jaw increases when on treatment
beyond five years. The effect of non-bisphosphonate
medications is temporary and wanes after cessation of
therapy. In contrast, bisphosphonates can have residual
treatment effects that last for several years [172].
Patients should be monitored at regular intervals.

Compliance with medications, adequacy of calcium and
vitamin D intake, level of physical activity and risk of fall
should be assessed. Annual accurate height measure-
ments should be performed; a loss of height by 2 cm is
an indication for vertebral imaging [123]. Serial DXA
scans should be performed to check BMD. Vitamin D
levels should be monitored. The decision on the dur-
ation of treatment should be made after assessing all of
the above in each individual patient separately. For pa-
tients with low-to-moderate risk of fall and fractures,
medications may possibly be stopped. In case of a high
risk for fracture, treatment should be continued [173].
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COPD and sarcopenia
Skeletal muscles play a critical part in metabolism and
overall functional health. Sarcopenia is a syndrome char-
acterized by progressive decrease of muscle mass and
strength. It is estimated that after the age of fifty, healthy
adults lose roughly 1–2% of their skeletal muscle each
year. Underlying mechanisms for this age-related muscle
loss include malnutrition, physical inactivity, hypogonad-
ism and chronic inflammation. Progressive muscle loss
can also occur in multiple disease states, such as cancer,
heart failure, HIV, end-stage renal disease, end-stage
liver disease, COPD and in prolonged illness [174].
Muscle mass loss is prevalent in patients with COPD as
a result of both the disease and aging [175].
The prevalence of sarcopenia increases with age. An

estimated 15% of people older than 65 years are affected
by the condition; in those above the age of 80, the pro-
portion of affected individuals is as high as 50% [176].
Sarcopenia places a significant public health and eco-
nomic burden, with an estimated $18.5 billion spent on
its treatment in 2000 [177].
Sarcopenia is quite common in COPD, with quadri-

ceps weakness being observed in a third of COPD out-
patients, even in individuals exhibiting mild to moderate
airway obstruction [74, 75, 178]. It contributes signifi-
cantly to a diminution of exercise capacity, reduced
quality of life, increased healthcare utilization, and
premature mortality [179, 180]. Given the substantial
morbidity and mortality associated with sarcopenia,
significant effort is being expended to identify strategies
for prevention, early diagnosis and treatment of sarcope-
nia in high risk individuals. Whether these strategies will
improve survival in such individuals is yet to be ascer-
tained [181].

Pathophysiology
Muscle dysfunction in COPD is a consequence of reduc-
tion in muscle mass, altered muscle metabolism and a
shift in muscle fiber composition.
Muscle strength and endurance are both adversely af-

fected. At the cellular level, this dysfunction is thought
to be due to an imbalance favoring protein breakdown
over synthesis, apoptosis, sarcomere and sarcolemma
damage, reduced myosin heavy chain-I isoform type I
[slow twitch/endurance] muscle fibers, and a decreased
density of capillaries and mitochondria [182–188].
Abnormalities in essential oxidative enzymes, mito-
chondrial activity and expression of myogenin and
m-cadherin– key molecules required for muscle growth
and repair– also contribute to the pathology [189].
At present, the exact reason for these changes in

COPD patients is unclear; it is thought that a variety of
mechanisms are responsible. These include poor periph-
eral oxygenation (due to COPD related gas exchange

abnormalities and anemia, leading to inflammation,
oxidative stress, apoptosis and poor muscle repair)
[190–192], systemic inflammatory state particularly dur-
ing exacerbations (inhibits muscle contractions, activates
catabolic systems such as ubiquitin proteasome, leads to
oxidative stress and causes apoptosis) [193–195], oxida-
tive stress (linked to systemic inflammation, with an
imbalance between reactive oxygen species and antioxi-
dants) [196, 197], hypercapnia (leading to acidosis and
impaired muscle proteostasis) [198, 199], diminished
effect of anabolic hormones such as growth hormone and
testosterone [189], net catabolic state [200], effect of
tobacco (through a number of the aforementioned mecha-
nisms) [201], myopathy induced by use of corticosteroids
(especially systemic steroids) [202, 203], malnutrition/
negative energy balance [200, 204], and decreased physical
activity leading to muscle disuse [205–207].
The last putative mechanism, i.e. sedentary behavior

due to the breathlessness caused by COPD, might be the
most important factor contributing to skeletal muscle
dysfunction. Evidence pointing to its central role in
sarcopenia pathogenesis includes disproportionate im-
pairment of lower limb musculature in comparison to
the upper limbs (that are subjected to a lesser degree of
physical inactivity than the legs) [208], similarity in the
structural changes seen in the sarcopenia of COPD and
atrophy due to muscle disuse [209], partial recovery
of strength with muscle training and conditioning
[210, 211], and the apparent lack of correlation between
the severity of airflow limitation and extent of muscle
dysfunction [212].

Clinical features and consequences of sarcopenia in COPD
The loss of muscle strength and function leads to limita-
tion of activity, decrease in mobility, slow gait, poor
stamina and, overall, general frailty [213]. Risk of falls
and subsequent fractures, due to prevalent comorbid
osteoporosis in this population, is increased. The conse-
quences of fractures in COPD patients have been out-
lined in the osteoporosis section of this article. Lastly, in
addition to diminished exercise capacity and health sta-
tus, presence of sarcopenia is an independent predictor
for mortality in patients with COPD [75, 179, 180, 214].

Diagnosis
The diagnosis of sarcopenia is confirmed in the presence
of low muscle mass in addition to decreased muscle
strength and/or reduced physical performance [215].
The most accurate diagnostic tests are generally used in
a research setting; constraints due to cost, availability,
and ease of use limit their clinical application (e.g. the
most precise measurements of muscle mass are obtained
with whole body imaging using CT scan or MRI; how-
ever, the cost, lack of easy access and concerns about
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radiation exposure make it difficult to use these modal-
ities in routine clinical practice). Proposed diagnostic
methods to ascertain muscle mass, strength and per-
formance in clinical practice are listed in Table 1.
DXA allows quantification of body components (bone

mineral, fat, and bone-mineral-fat-free mass) by de-
tecting the relative attenuation of two different energy
X-rays by the body; radiation exposure is minimal and
calculated muscle mass is similar to findings obtained
on whole body imaging [216]. Bioimpedance analysis
can also be used to measure muscle mass, especially
when a portable alternative to DXA is required [217].
Anthropometric measures (e.g. calf and mid-upper
arm circumference, skin fold thickness) are vulnerable
to error and are not recommended for use in clinical
practice [218].
Muscle strength is routinely assessed with the use of a

handheld dynamometer to measure handgrip strength. It
is reliable, easy to perform and inexpensive [219].
Isometric handgrip strength correlates well with power
in the lower extremities and is a strong predictor of dis-
ability and mortality [219].
Measures of physical performance include gait speed

alone or as part of the short physical performance bat-
tery test [where an individual is asked to perform a few
physical maneuvers including ability to stand with feet
in tandem/semi-tandem position, walk 8 ft, and get up
from a chair and sit down five times], and the timed get-
up and go test (measures the time required for a subject
to get up from a chair, walk a short distance, turn
around and sit back down) [215]. These tests measure
balance, strength, endurance and gait. A cut-off gait
speed of 0.8 m/s is a useful screening tool for predicting
risk of sarcopenia [220].

Treatment
Exercise is the only modality known, to date, to prevent
and improve muscle dysfunction [221, 222]. Resistance
training, either through traditional strength training or
functional strength training (which mimics activities of
daily living), increases muscle mass and power and per-
ception of well-being [223, 224].
Pulmonary rehabilitation significantly improves exer-

cise capacity, severity of dyspnea and health-related
quality of life in COPD subjects, including in patients
with baseline normal exercise capacity [225, 226].

Sarcopenia does not appear to diminish the impact of pul-
monary rehabilitation on these outcomes. Moreover, a
small proportion of patients appear to have reversal of their
muscle dysfunction with pulmonary rehabilitation [227].
There is no definite evidence supporting the use of nutri-

tional supplements – antioxidants, creatine, amino acid
combinations, for sarcopenia at present [204]. Optimization
of vitamin D levels and protein intake [1–1.5 g/kg/day] is
recommended for all patients with sarcopenia [228].
A number of medications that could potentially treat

sarcopenia associated with disease and aging are being
developed. These include medications that work through
the growth hormone/insulin-like growth factor 1 path-
way (ghrelin mimetics/growth hormone secretagogues)
[229, 230], selective androgen receptor modulators
(SARMs), and agents that work through the myostatin/
acitivin A pathway.
The use of anabolic steroids and testosterone for

muscle atrophy has been limited by their associated
adverse effects, e.g. worsening of prostatic hyperplasia or
cancer in men, virilization in women, and cardiovascular
events [231, 232]. Medicines with selective anabolic ac-
tivity in bones and muscles, with no effect on levels of
luteinizing hormone and which are not converted to
dihydrotestosterone or estradiol, would have a favorable
risk/benefit ratio and would be ideal for the treatment of
sarcopenia. Enobosarm, a non-steroidal SARM, appears
to have these properties and has shown promising re-
sults in phase II trials, with improvement in muscle and
bone mass and little effect on other androgen-sensitive
tissues [233].
Other medications under development include agents

that work through the myostatin/activin pathway. Myos-
tatin is a molecule from the transforming growth factor
B (TGF-B) superfamily that is upregulated in diseases
associated with cachexia and has been strongly linked to
muscle wasting by binding and activation of the activin
receptor. Inhibitors of this pathway cause regeneration
of muscle mass and improvement in muscle perform-
ance in animal models [234, 235]. It remains to be seen
whether these therapies will prove to be effective in
humans.

Conclusion
Osteoporosis and sarcopenia are common in COPD and
are associated with significant disability and mortality.
Despite a high prevalence, osteoporosis and sarcopenia
are underdiagnosed and undertreated in patients with
COPD. Osteoporosis increases the risk of fractures,
while sarcopenia contributes to significant functional
limitation. Physical activity/exercise, especially in the
form of a multi-disciplinary pulmonary rehabilitation
program, has a cardinal role in the prevention and treat-
ment of both conditions. Ensuring adequate vitamins’

Table 1 Diagnostic testing for sarcopenia

Muscle mass a. Dual energy X-ray absorptiometry (DXA)
b. Bioimpendence analysis (BIA)

Muscle strength Handheld dynamometer

Physical performance a. Gait speed
b. Timed Up and Go (TUG)
c. Short Physical Performance Battery (SPPB)
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levels and nutritional intake, and smoking cessation are
also important. Pharmacological therapy for osteoporosis
consists of anti-resorptive medications and teriparatide;
so far, there are no commercially available drugs for the
treatment of sarcopenia, although many promising
agents are in the process of being developed. There
remains a pressing need for further research related to
both conditions and formulation of guidelines for their
management, specifically in COPD subjects.
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