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Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a debilitating disease of the lung which results in irreversible
airflow obstruction and is currently the third leading cause of death worldwide. Genetic and environmental factors
contributing to COPD are presently under investigation. As lung function measures cluster within families, we now
know that lung function is partly inherited. Thus, identifying genes involved in determining lung function at the
population level and in determining the risk of development of COPD is important. A thorough understanding of
the mechanisms underlying maintenance of lung function and knowledge of how these are altered in lung disease
could ultimately lead to targeted therapeutic approaches. This is of potential value in COPD because current
treatments are designed to reduce symptoms but do not modify disease progression. Here, we review the genes
identified from both meta-analyses of genome-wide association (GWA) studies of lung function in large populations
and case control GWA studies in COPD. We hypothesise that mechanisms involved in the early development of the
lungs may vary/alter and predispose to COPD later in life. We discuss the genes and pathways involved in normal
lung development and ascertain whether they overlap with key genes identified from GWA studies. Epigenetic
factors may also play an important role in lung function, development and disease. Furthermore, we discuss our
findings on the functional characterisation of HTR4 and genes within the 4q24 locus associated with both lung
function and COPD. Lastly, we consider new genetic techniques and models to study candidate genes identified by
the approaches discussed.
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Introduction
Diseases which cause a decline in lung function remain
a huge burden to human society and the economy. One
such disease, Chronic Obstructive Pulmonary Disease
(COPD) is a heterogeneous and debilitating condition
characterised by the development of irreversible airflow
obstruction. The development of COPD has a strong en-
vironmental basis, with cigarette smoking and exposure
to poor air quality being key risk factors. Unlike some
common chronic diseases, the incidence of COPD has
not declined in recent years, in fact there continues to
be increasing prevalence, morbidity and mortality rates
for COPD globally. According to the World Health
Organisation, 64 million people worldwide have COPD
and > 3 million people die each year of the disease [1].
Within the UK alone it is estimated that 3 million

people have COPD and it accounts for 30,000 deaths
each year [2]. Critically, COPD is now the third leading
cause of death worldwide, Fig. 1 [3].
In general, COPD is a progressive condition, leading

to airway remodelling, inflammation and narrowing of
the small airways and/ or alveolar destruction (emphy-
sema), with symptoms generally becoming evident later
in life [4]. Although the introduction of smoking bans
may help to lower the incidence of COPD in some coun-
tries, not all patients with COPD are smokers [5]. It is
also important to note that COPD can be caused by bio-
mass exposure. However, in addition to environmental
exposures, around 40 % of variability in lung function is
estimated to be heritable [6–9]. There are a range of
therapeutic agents available for treatment of COPD, in-
cluding short and long acting β2 agonists, anti-muscarinic
agents, inhaled and oral steroids and phosphodiesterase
inhibitors: however, whilst these drugs can improve symp-
toms in some patients none of them have been show to
alter the progression of underlying disease.
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Review
Diagnosing COPD using spirometry
Spirometry is used to assess lung function in humans.
The most useful measures are FEV1 (forced expiratory
volume in 1 s) and FVC (forced vital capacity, i.e., the
volume of air expired by a full expiration). When the
ratio of FEV1 to FVC is under 0.7, this is referred to as
an obstructive defect. The severity of COPD can also be
assessed by spirometry, a value of FEV1 less than 80 %
predicted indicating (in the presence of a reduced FEV1/
FVC ratio) the presence of COPD. Interestingly, it has
been shown that spirometry measurements also cluster
within families again suggesting there is a hereditary
component which may influence the development of
respiratory disease [10, 11]. Between 20-60 % of pheno-
typic variance in lung function measures is suggested to
be attributed by hereditary factors [6–9] and this is
strongly correlated in twin studies [12].

Environmental and genetic factors of COPD
Smokers are characteristically prone to developing
COPD; therefore smoking is a primary risk factor for de-
veloping COPD. Estimates indicate that after 25 years of
smoking 30-40 % of smokers will have COPD [13]. Even
non-smokers may be affected due to general exposure to

air pollutants. One investigation into long term smoke
particulate matter exposure revealed a significant associ-
ation between an increase in exposure to small particles
and a mild decrease in FEV1 across 20 years [14]. In
addition, biomass emissions are also a notable risk factor
globally, in general consisting of smoke inhalation via in-
door pollution or occupational exposure. Genetic predis-
position is also a known risk factor which increases an
individual’s susceptibility to developing COPD. The most
commonly studied example in COPD is α1-antitrypsin
deficiency where individuals (commonly of northern Euro-
pean ancestry) are homozygous for a deleterious mutation
in SERPINA1 [15]. 1-2 % of COPD cases are attributable
to this mutation, which leads to enhanced neutrophil
elastase activity, ultimately leading to destruction of the
alveoli. Early genetic linkage analyses have indicated the
existence of gene-by-smoking interactions as contributing
to a decline in lung function. In those studies the loga-
rithm of odds (LOD) score of genetic linkage was
improved by restricting the analysis to smokers which sug-
gested the existence of interaction between cigarette smoke
exposure and genetic susceptibility [16]. More recently
Liao et al. have more robustly explored the effects of gene-
by-environment interaction by using individual SNPs and
genetic network approaches [17]. Both ways of analysis

Fig. 1 Global death ranks for the top 25 causes of death in 1990 and 2010. In 2010, COPD rose to the third leading cause of death worldwide.
UI = uncertainty interval, COPD = chronic obstructive pulmonary disease. Reproduced from Lozano et al. [3].
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identified SNPs near gene SLC38A8 as significantly
modifying the effects of occupational exposure on FEV1.
Genetic network analysis alone identified genes CTLA-4,
HDAC, and PPAR-alpha as modulating these effects. This
study implied the existence of genes related to inflamma-
tory processes which could modify the effects of occupa-
tional exposure on lung function. Readers are advised to
refer to an excellent review by Molfino and Coyle which
reviews the gene-environment interaction in COPD [18].

Meta-analyses of GWA studies identifies genetic regions
associated with FEV1

Large scale genetic studies (genome wide association
studies (GWAS)) are now able to accurately reveal asso-
ciations between phenotypes (such as spirometry mea-
sures) and genetic loci. By meta-analysing many GWA
studies, researchers have revealed a number of single nu-
cleotide polymorphisms (SNPs) within/near genes which
are associated with the lung function measure FEV1

(Table 1). These genes may potentially influence the de-
velopment or severity of COPD and could also be im-
portant in other obstructive diseases of the lung [19, 20].
Five meta-analyses and one look up of candidate SNPs

identified from the SpiroMeta general population were
included in the overview of GWAS meta-analyses in
Table 1. In 2010, back to back publications by our group
[19] and others [20] showed the utility of meta-analysing
GWA studies when both studies identified SNPs within
the 4q24 locus to be the most significantly associated with
FEV1. Hancock et al. identified 46 SNPs at this locus with
the smallest p value for SNP rs17331332 located nearest
NPNT, whilst the top SNP of our study is located in op-
positely transcribed genes INTS12 and GSTCD [20, 21].
Interestingly, a look up of previously suggested candidate
genes found no significant associations suggesting that
genome wide approaches are the most reliable way to
identify true genetic risk factors for COPD and/or lung
function phenotypes [22]. In the same year Soler-Artigas
et al. reported 16 novel loci associated with lung function;
5 associated with FEV1, 4 of which survived joint meta-
analysis of all stages (MECOM (also known as EVI1),
ZKSCAN3, CDC123, C10orf11) [23]. Subsequently in
2012, Hancock et al. identified KCNJ2/SOX9 at 17q24.3 to
be associated with FEV1 [24]. Given that cigarette smoking
adversely affects pulmonary function, the group con-
ducted genome-wide joint meta-analyses of SNPs and
SNP by smoking associations. GWAS have also been uti-
lised to identify variants associated with smoking behav-
iour. In 2010, three pivotal publications identified loci
associated with smoking behaviour. Whilst Thorgeirsson
et al. identified variants in neuronal acetylcholine recep-
tors, CHRNB3-CHRNA6 and the Cytochrome P450,
CYP2A6 associated with smoking behaviour [25], Liu et al.

refined the association identified at 15q25 [26]. In the
same year the Tobacco and Genetics Consortium identi-
fied multiple loci associated with smoking behaviour [27].
More recently in 2014, Tang et al. studied longitudinal

changes in lung function and mean rates of decline by
smoking pattern. The strongest association with decline
in FEV1 mapped to SNPs at 15q25.1 encompassing
IL16/STARD5/TMC3, however, this result did not reach
genome-wide significance [28]. Furthermore, Tang et al.
studied rate of FEV1 change in a subsequent meta-
analyses of 5 cohorts which had more than 3 measure-
ments per participant. Interestingly, a SNP within
BAZ2B was identified at both stages [28].

COPD associated genes
In addition to the study of the genetic basis for lung
function in large populations, sixteen case control stud-
ies of COPD have also been studied to try and identify
SNPs in genes which are associated with COPD (Table 2).
In GWA studies of COPD cohorts, SNP rs7671167,
within FAM13A, was associated with chronic bronchitis,
airway obstruction, emphysema and COPD susceptibility
[29–32]. Additionally 9 other SNPs within FAM13A were
associated with COPD [29, 31–34]. This region is close to
but distinct from the 4q24 locus identified by earlier stud-
ies on FEV1 and FEV1/FVC ratio. HTR4 (encoding a sero-
tonin receptor) was also found to be associated with
COPD in two separate GWA studies [35, 36]. The 4q24
locus and HTR4 are discussed in more detail in a later
section.
In particular, 6 studies have found numerous SNP’s at

the 15q25.1 locus to be associated with COPD [30, 31, 34,
35, 37, 38]. This locus encompasses 3 cholinergic nicotinic
receptors (CHRNA5, CHRNA3 and CHRNAB4). However,
this locus appears to exert its effects by determining an
individual’s risk for nicotine dependence rather than
through any direct effect on the lung per se.
Current efforts within the respiratory research com-

munity are trying to decipher the biological relevance of
the functions of these genes and elucidate whether path-
ways identified are therapeutically targetable. On com-
parison of the genes shown in Tables 1 and 2 presenting
the top genes associated with either FEV1 (from meta-
analysing GWA studies) or COPD, the most obvious pri-
orities for further research would appear to include
TNS1, genes within the 4q24 locus (FLJ20184, INTS12,
GSTCD and NPNT), HHIP, HTR4 and SOX9. Within the
genes listed in Table 2 it is of particular note that there
are a number of SNPs in genes implicated in the control
of lung development which also show evidence of associ-
ation with COPD risk, namely HHIP (SHH pathway),
FGF7 (Fibroblast Growth Factor pathway) and SOX9
(Wnt/β-catenin pathway).
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Genetics of lung development
Gene expression across lung development is a complex
and intricately timed process. Several signalling path-
ways in particular are considered key for correct lung
development (Table 3). Lung development is also sub-
divided into five distinct developmental stages (Fig. 2),
each governed by specific signalling cascades (Table 4).

The mammalian respiratory system originates from the
anterior foregut endoderm in the foetus for the purpose of
developing an ideal structure to facilitate gas exchange.
During embryogenesis and the following pseudoglandular
stage the two lung buds begin a complex process of
branching morphogenesis; a highly regulated process gen-
erating a tree-like structure of epithelial tubes branching

Table 1 FEV1 associated SNPs identified using GWAS meta-analyses

Gene Locus SNP Measure Reference

ST3GAL3 1p34.1 rs121374475 FEV1 decline Tang et al. 2014 [28]

NFIA 1p31.3 rs766488 FEV1 decline Tang et al. 2014 [28]

ESRRG/GPATCH2 1q41 rs17698444 FEV1 decline Tang et al. 2014 [28]

BAZ2B 2q24.2 rs12692550 FEV1 decline and bRate of FEV1 change Tang et al. 2014 [28]

FOSL2/PLB1 2p23.2 rs10209501 bRate of FEV1 change Tang et al. 2014 [28]

TNS1 2q35 rs2571445 FEV1 Repapi et al. 2010 [19]

HDAC4 2q37.3 rs12477314 FEV1 Soler-Artigas et al. 2011 [36]

MECOM 3q26.2 rs1344555 FEV1 Soler-Artigas et al. 2011 [36]

FLJ25363/MIR4445 3q13.13 rs1729588 bRate of FEV1 change Tang et al. 2014 [28]

GSTCD 4q24 rs10516526 FEV1 Repapi et al. 2010 [19]

FLJ20184 4q24 46 SNPs across locus FEV1 Hancock et al. 2010 [20]

INTS12 4q24 46 SNPs across locus FEV1 Hancock et al. 2010 [20]

GSTCD 4q24 46 SNPs across locus FEV1 Hancock et al. 2010 [20]

NPNT 4q24 46 SNPs across locus FEV1 Hancock et al. 2010 [20]

HHIP 4q31 rs12604628 FEV1 Repapi et al. 2010 [19]

PDE4Da 5q12 rs298028 FEV1 Obeidat et al. 2011 [22]

HTR4 5q33 rs3995090 FEV1 Repapi et al. 2010 [19]

ZKSCAN3 6p22.1 rs6903823 FEV1 Soler-Artigas et al. 2011 [23]

MTHFD1La 6q25.1 rs803450 FEV1 Obeidat et al. 2011 [22]

NAT2a 8p22 rs6988857 FEV1 Obeidat et al. 2011 [22]

CDC123 10p13 rs7068966 FEV1 Soler-Artigas et al. 2011 [23]

C10orf112/MALRD1 10p12.31 rs10764053 bRate of FEV1 change Tang et al. 2014 [28]

C10orf11 10q22.3 rs11001819 FEV1 Soler-Artigas et al. 2011 [23]

ME3 11q14.2 rs507211 bRate of FEV1 change Tang et al. 2014 [28]

CNTN5a 11q22 - q22.2 rs17133553 FEV1 Obeidat et al. 2011 [22]

TRPV4a 12q24.1 rs3742030 FEV1 Obeidat et al. 2011 [22]

TMCO3 13q34 rs2260722 FEV1 decline Tang et al. 2014 [28]

SERPINA1a 14q32.13 rs3748312 FEV1 Obeidat et al. 2011 [22]

IL16/STARD5/TMC3a 15q25.1 rs4077833 FEV1 decline Tang et al. 2014 [28]

SV2B 15q26.1 rs8027498 FEV1 decline Tang et al. 2014 [28]

MYH11 16p13.11 rs8051319 FEV1 decline Tang et al. 2014 [28]

CACNG4 17q24.2 rs740557 FEV1 decline Tang et al. 2014 [28]

KCNJ2/SOX9 17q24.3 rs11654749 FEV1 Hancock et al. 2012 [24]

BCL2a 18q21.3 rs2850760 FEV1 Obeidat et al. 2011 [22]

MACROD2a 20p12.1 rs204652 FEV1 Obeidat et al. 2011 [22]

Top hits for FEV1 association seen in 6 studies of genome-wide association study meta-analyses [19, 20, 22–24, 28]
aTop hits that were outside the level of significance, bIn meta-analyses of 5 cohorts with over 3 measurements per participant
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Table 2 COPD associated SNPs identified using GWAS or candidate gene methodology

Gene Locus SNP Association/Comparison Reference

TGFB2 1q41 rs4846480 Severe COPD vs healthy smoker Cho et al. 2014 [34]

TNS1 2q35 rs2571445 COPD susceptibility Soler-Artigas et al. 2011 [36]

PID1 2q36.3 rs10498230 FEV1/FVC associated measure - COPD susceptibility Castaldi et al. 2011 [96]

PID1 2q36.3 rs1435867 FEV1/FVC associated measure - COPD susceptibility Castaldi et al. 2011 [96]

PID1 2q36.3 rs16825116 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

FAM13A 4q22.1 rs2869967 Chronic Bronchitis COPD vs smoker control Lee et al. 2014 [29]

FAM13A 4q22.1 rs2045517 Chronic Bronchitis COPD vs smoker control Lee et al. 2014 [29]

FAM13A 4q22.1 rs7671167 Chronic Bronchitis COPD vs smoker control Lee et al. 2014 [29]

FAM13A 4q22.1 rs7671167 Airway obstruction in COPD Cho et al. 2012 [32]

FAM13A 4q22.1 rs7671167 Emphysema in COPD cohort Pillai et al. 2010 [30]

FAM13A 4q22.1 rs7671167 COPD susceptibility Cho et al. 2010 [31]

FAM13A 4q22.1 rs1903003 COPD susceptibility Cho et al. 2010 [31]

FAM13A 4q22.1 rs2904259 Chronic Bronchitis COPD vs smoker control Lee et al. 2014 [29]

FAM13A 4q22.1 rs2609264 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

FAM13A 4q22.1 rs2609261 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

FAM13A 4q22.1 rs2609260 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

FAM13A 4q22.1 rs4416442 Moderate to severe and severe COPD vs healthy smoker Cho et al. 2014 [34]

FAM13A 4q22.1 rs1964516 Airway obstruction in COPD Cho et al. 2012 [32]

FLJ20184 4q24 rs17035960 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

FLJ20184 4q24 rs17036052 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

INTS12 4q24 rs11727189 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

INTS12 4q24 rs17036090 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

GSTCD 4q24 rs10516526 COPD susceptibility Soler-Artigas et al. 2011 [36]

GSTCD 4q24 rs10516526 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

GSTCD 4q24 rs11097901 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

GSTCD 4q24 rs11728716 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

NPNT 4q24 rs17036341 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

NPNT 4q24 rs17331332 FEV1 associated measure - COPD susceptibility Castaldi et al. 2011 [96]

HHIP 4q31.21 rs13141641 Moderate to severe and severe COPD vs healthy smoker Cho et al. 2014 [34]

HHIP 4q31.21 rs12504628 COPD susceptibility Soler-Artigas et al. 2011 [36]

HHIP 4q31.21 rs13118928 FEV1/FVC, Emphysema and Exacerbations in COPD cohort Pillai et al. 2010 [30]

HHIP 4q31.21 rs13118928 COPD susceptibility Cho et al. 2010 [31]

HHIP 4q31.21 rs13118928 COPD susceptibility van Durme et al. 2010 [103]

HHIP 4q31.21 rs1828591 COPD susceptibility van Durme et al. 2010 [103]

HTR4 5q32 rs7733088 Airway obstruction Wilk et al. 2012 [35]

HTR4 5q32 rs3995090 COPD susceptibility Soler-Artigas et al. 2011 [36]

ADAM19 5q33 rs2277027 FEV1/FVC associated measure - COPD susceptibility Castaldi et al. 2011 [96]

ADAM19 5q33 rs1422795 FEV1/FVC associated measure - COPD susceptibility Castaldi et al. 2011 [96]

PPT2 6p21 rs10947233 FEV1/FVC associated measure - COPD susceptibility Castaldi et al. 2011 [96]

AGER 6p21 rs2070600 FEV1/FVC associated measure - COPD susceptibility Castaldi et al. 2011 [96]

ACN9 7q21.3 rs10231916 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

ACN9 7q21.3 rs10229181 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

RHOBTB1 - TMEM26 10q21.2 rs10761570 Decline in FEV1 in mild/moderate COPD Hansel et al. 2013 [104]

RHOBTB1 - TMEM26 10q21.2 rs7911302 Decline in FEV1 in mild/moderate COPD Hansel et al. 2013 [104]
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by dichotomy [39]. Branching is driven by a number of
signalling pathways communicating between the mesen-
chyme and the epithelium, directing the growth and pat-
terning of lung buds (Table 3). Branching morphogenesis
is a critical time during lung development determining
lung resistance and compliance in adult life. As discussed
above, these determinants of airway function can be quan-
tified by FEV1 and FEV1/FVC measures, and therefore
polymorphic variation in genes active during the period of
airway branching could feasibly be linked to adult lung
function [40].

Of the highly complex signalling systems; Sonic
Hedgehog (SHH) and Fibroblast growth factor (FGF) are
considered two of the primary signalling pathways crit-
ical for lung development [39]. The critical role of separ-
ation of the trachea from oesophagus is influenced by
SHH signalling and FGF patterning, with both pathways
initially involved in determining distal airway develop-
ment [41, 42]. Furthermore, the transcription factor
Nkx2.1 marks the future oesophagus and Wnt signalling
works alongside to specify lung fate [43]. In relation to
lung diseases, despite regeneration and repair of injured

Table 2 COPD associated SNPs identified using GWAS or candidate gene methodology (Continued)

EFCAB4A 11p15 rs34391416 Chronic Bronchitis COPD vs smoker control Lee et al. 2014 [29]

CHID1 11p15 rs147862429 Chronic Bronchitis COPD vs smoker control Lee et al. 2014 [29]

ANO3 11p14.2 rs7119465 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

MMP12 11q22.2 rs626750 Severe COPD vs healthy smoker Cho et al. 2014 [34]

BICD1 12p11.21 rs10844154 Emphysematous COPD Kong et al. 2011 [105]

BICD1 12p11.21 rs161976 Emphysematous COPD Kong et al. 2011 [105]

LOC100128066 - TTC6 14q21.1 rs177852 Decline in FEV1 in mild/moderate COPD Hansel et al. 2013 [104]

RIN3 14q32.12 rs754388 Moderate to severe and severe COPD vs healthy smoker Cho et al. 2014 [34]

IREB2 15q25.1 rs1062980 COPD susceptibility Brehm et al. 2011 [37]

IREB2 15q25.1 rs13180 COPD susceptibility Brehm et al. 2011 [37]

IREB2 15q25.1 rs8034191 COPD susceptibility Brehm et al. 2011 [37]

IREB2 15q25.1 rs265606 COPD susceptibility Brehm et al. 2011 [37]

PSMA4 15q25.1 rs2036534 COPD susceptibility Brehm et al. 2011 [37]

AGPHD1 - CHRNA3/5 15q25.1 11 SNPs Airway obstruction in ever smoker Wilk et al. 2012 [35]

CHRNA5 15q25.1 rs17486278 Airway obstruction in all ever/never smoker Wilk et al. 2012 [35]

CHRNA3/5 15q25.1 rs8034191 FEV1, FEV1/FVC and Emphysema in COPD cohort Pillai et al. 2010 [30]

CHRNA3 15q25.1 rs12914385 COPD susceptibility Brehm et al. 2011 [37]

CHRNA3 15q25.1 rs1051730 COPD susceptibility Brehm et al. 2011 [37]

CHRNA3 15q25.1 rs12914385 Moderate to severe and severe COPD Cho et al. 2014 [34]

CHRNA3/CHRNA5/IREB2 15q25.1 rs1062980 COPD susceptibility Cho et al. 2010 [31]

CHRNA3/CHRNA5/IREB2 15q25.1 rs13180 COPD susceptibility Cho et al. 2010 [31]

CHRNA3/5 15q25.1 rs8034191 COPD susceptibility Pillai et al. 2009 [38]

CHRNA3/5 15q25.1 rs1051730 COPD susceptibility Pillai et al. 2009 [38]

FGF7 15q21.2 rs12591300 COPD susceptibility Brehm et al. 2011 [37]

FGF7 15q21.2 rs4480740 COPD susceptibility Brehm et al. 2011 [37]

DTWD1 15q21.2 rs17404727 COPD susceptibility Brehm et al. 2011 [37]

MCTP2 15q26.2 rs8031759 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

AKAP1 17q22 rs886282 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

SOX9 17q24.3 rs17178251 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

SOX9 17q24.3 rs17765644 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

SOX9 17q24.3 rs11870732 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

RAB4B - EGLN2 19q13 rs7937 Airway obstruction in COPD Cho et al. 2012 [32]

RAB4B - EGLN2 19q13 rs2604894 Airway obstruction in COPD Cho et al. 2012 [32]

PDE9A 21q22.3 rs2269145 Lung function gene associated with COPD susceptibilty Kim et al. 2014 [33]

COPD gene associations in the literature [29–38, 96, 103–105]
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lung tissue not currently being fully understood, it can
be hypothesised that events would follow the same or
similar pathways as those used during lung development
outlined here. Therefore, it is important to understand
any potential associations between genes involved in
both COPD and lung development. For instance, of the
genes associated with COPD in Table 2, SOX9, HHIP,
MMP12, HTR4 and FGF7 also have distinct roles during
lung development. SOX9, HHIP, FGF7 are involved in
airway branching morphogenesis typically with expres-
sion levels peaking during the embryonic and pseudo-
glandular stages [44–53]. SOX9 expression can be
modulated by a number of key pathways including: HH,
Wnt/β-catenin, Notch, TGF-β, NFКB, BMP and FGF
[54]. Additional genes of interest due to varying expres-
sion patterns across and associations with lung develop-
ment include: EFCAB4A, CHID1, ANO3, AKAP1, TGFβ2,
GSTCD and NPNT [20, 21, 55–60]. These genes have
been demonstrated to be significantly associated with
COPD (Table 2) and show preliminary evidence for in-
volvement with lung development, with a common feature
of varied expression during branching morphogenesis
stages. SNPs in the genes AGER, HHIP and TNS1 are
associated with reduced airway calibre and may be in-
volved in lung development and growth [47]. In summary

therefore, it appears that many of the genes which poten-
tially underlie the associations seen in GWA studies of
lung function and/or COPD are involved in control of
lung development and potentially remodelling. Some add-
itional support for a role in lung development comes from
the observation that associations with lung function are
present across the age spectrum, although the number of
studies in younger age groups and children to date has
been small. Furthermore, the mechanism of action of po-
tential susceptibility genes can vary, where genetic suscep-
tibility could lead to dysregulated lung development (as
discussed) during childhood or adolescence or may lead
to enhanced decline of FEV1 in adulthood, which has long
been considered the most common indicator of COPD
[61–63]. A recent study has indicated that approxi-
mately half of the individuals who meet the criteria for
COPD in later life (COPD at grade 2 or higher accord-
ing to the Global Initiative for Chronic Obstructive
Lung Disease (GOLD) grading system) [4] do attain
normal maximal FEV1 in young adulthood and have ac-
celerated rates of decline [64]. However, the authors
also suggest that a substantial proportion of patients
with COPD may not have had a rapid decline in FEV1,
as the second half of participants followed a more typ-
ical decline in FEV1 starting from a low initial value of

Table 3 Key signalling pathways involved in mammalian lung development

Signalling pathway Role in lung development

Fibroblast Growth Factor (FGF) Role in the rate of airway bud extension

Involved in the formation of new alveoli

Limits proliferation or migration of branching epithelium

FGF among the signals that confer anterior-posterior identity

Sonic Hedgehog (SHH) Important in regulating lung cell proliferation and asymmetry

Negatively regulates FGF10

Limits lung bud growth

NK2 homeobox (NKX2.1) Important in formation of tracheo-oesophageal septum

Essential for initiating branching

Notch Key role in cell-cell communication during lung development

Promotes proximal lung cell fates

Planar Cell Polarity (PCP) Drives polarisation of cells

Required for branching

Involved in determining lung architecture

Retinoic Acid Promotes growth of the primary lung buds

Down-regulates TGF β signalling

Transforming growth factor β/Bone morphogenic protein (BMP)-
SMAD (TGFβ/BMP-SMAD)

Can inhibit/stimulate lung morphogenesis

Contributes to distal lung development

BMP among the signal that confer anterior-posterior identity

Wnt/β-catenin Negatively regulates branching

Involved in developing peripheral airways

Lung development and signalling pathway information was collected from many sources [39, 42, 43, 106–120]
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FEV1. Hence this may indicate populations of COPD
patients with different rates of decline in FEV1 poten-
tially a consequence of dysregulated lung development
or an earlier rapid decline in FEV1 [64]. Additionally, it
can be reasoned that the most important determinant
of maximally attained lung function later in life is lung
function measurement at a younger age, as shown by
several studies involving children and young adults
[65–68] which may indicate initial dysregulated lung
development.
Also, in 2004, de Marco et al. have proposed that the

origin of COPD could be from an earlier age group than
is usually believed, as a considerable percentage of sub-
jects aged 20–44 years reported already suffering from
COPD and GOLD stage 0 chronic symptoms [69] and
later the group identified a subgroup of young adult sub-
jects with a high risk of developing COPD, independ-
ently of smoking habits [70].

Epigenetics considerations in lung function and COPD
Epigenetics is commonly defined as heritable changes
to gene expression, independent of changes to DNA

sequence. Whereas genetic changes in DNA sequence
involve variation of nucleotides, epigenetic changes
alter methylation patterns at CpG sites or modifications
to chromatin, influencing the level of DNA folding and
therefore the levels of transcription at a particular gene.
This area of research investigates the link between life-
time exposures of parents with the influence these may
have on epigenetic patterns in children. Despite epigen-
etics consisting of dynamic and modifiable processes
which can change over time, it is of key interest as
these changes can persist across generations [71].
Typically, COPD is classed as a disease of later life, al-

though as discussed above predisposition to COPD may
also have an early origin during lung development. In
particular, smoking during pregnancy has been investi-
gated to understand the effects of smoking exposure on
lung development, as it is suggested that susceptibility
to environmental factors is highest during this period
and changes may contribute to adult airflow limitation
[72]. Furthermore, maternal smoking has been demon-
strated to be associated with lower adult lung volume
independent to post-natal exposure and of personal

Fig. 2 Five stages of lung development. Stages of lung development in humans: Diagrammatic timeline of the developmental organisation of
the mammalian respiratory system. At the embryonic stage, the major airways are formed. During the canalicular stage epithelial differentiation
occurs and the air-blood barrier is formed. In the saccular stage of lung development, air spaces expand and finally at the alveolar stage, secondary
septation occurs. Reprinted from [102] with permission from Elsevier, copyright (2007).
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smoking [72–76]. Of the wide range of components in
tobacco smoke nicotine is thought to be the key com-
ponent which alters lung development, principally be-
cause it is easily transferred to the foetus in utero in
circulating blood [77–81]. Importantly, approximately
12-22 % of women smoke during pregnancy [82–87].
Data from animal studies and observations in humans
show that smoking during pregnancy is associated with
lower lung function in offspring and increases in airway
smooth muscle, decreasing alveolar surface area and
collagen deposition [78, 79, 88, 89]. Effects influencing
lung function such as these can be attributable to epi-
genetic changes which may lead to a predisposition to
developing COPD. For instance, exposure to nicotine in
utero has been demonstrated to increase DNA methyla-
tion and acetylation in the foetus, which would be pre-
dicted to produce down-regulation and up-regulation
of transcriptional activity, respectively, in the relevant
target genes [77].
However, few studies have been performed identifying

alterations at specific epigenetic markers in response to
maternal smoking and COPD. Nevertheless, an interest-
ing direction may be in the form of altered methylation
patterns in repetitive elements across the genome. In
2009, Breton et al. demonstrated that pre-natal smoking
has been associated with methylation patterns in

repetitive elements, such as AluYb8, also in conjunction
with null genotypes in genes involved in tobacco smoke
metabolism (GSTM1 and GSTP1) [90]. This study sug-
gests differential methylation changes may potentially be
dependent upon the genotype of a foetus, hence determin-
ing the level of susceptibility to smoke induced epigenetic
alterations [90]. The group also showed that smoking dur-
ing pregnancy was associated with global hypomethyla-
tion, suggested to lead to chromosomal instability [90].
With the growing interest in nicotine replacement

therapy (NRT) as a seemingly healthier alternative to
smoking, the evidence outlined here is a reminder that
use of NRT may not be a safe alternative to smoking
during pregnancy [91, 92], as NRT would still be pre-
dicted to exert epigenetic effects which could alter lung
development. Furthermore, maternal smoking has been
found to synergise with personal smoking to increase
airflow limitation and risk for development of COPD
[75].

Characterisation of INTS12, GSTCD and HTR4: examples of
genes with potential roles in lung development
We have recently provided evidence indicating the pos-
sible role of genetic variation near or at the integrator
complex subunit 12 (INTS12, 4q24), as influencing lung
function measures [21]. We reported that there is a

Table 4 Stages and events during lung development in humans and mice

Developmental stage Human gestation age Mouse gestation age Lung development events

Embryonic 4-7 weeks 9-14 days Septation of trachea from oesophagus

Lung bud forms two main bronchi and individual lobes

Supporting structures are formed including bronchial cartilage
and smooth muscle

Pseudoglandular 5-17 weeks 14-16.5 days Branching morphogenesis begins

Proximal airway epithelial and mesenchymal differentiation
occurs

Canalicular 16-26 weeks 16.5-17.5 days Further branching

Vascularisation and angiogenesis occurs along the airway

Rapid increase in capillary numbers

Respiratory bronchioles and alveolar ducts form

Type II alveolar epithelial cells differentiate

Saccular 24-36 weeks 17.5 days to postnatal day 5 Type I alveolar epithelial cells differentiate

Type II alveolar epithelial cells maturation

Air sacs are developed

Lymphatic network develops

Surfactant begins to be produced

Initial stage of primary septation for formation of alveoli occurs

Alveolar 36 weeks to childhood Postnatal day 5-30 Secondary septation produces alveoli

Increasing levels of surfactant produced

Majority of gas exchange surface is formed

Information on the stages of human and mouse lung development was collected from many sources [42, 107, 121, 122]
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significant positive correlation between INTS12 expres-
sion in lung tissue and percent predicted FEV1. The
same was true for the nearby Glutathione S-transferase,
C-terminal domain containing gene, GSTCD, and we
hypothesised that these genes share the same promoter
region due to the fact that they are co-ordinately tran-
scribed. The two genes are also co-expressed in cells of
the lung and whole lung tissue. Interrogation of the pub-
lically available ENCODE dataset revealed that the pre-
sumed shared promoter contains CpG islands as well as
transcription factor binding sites. Most importantly,
SNPs that are genome-wide significant for lung function
are in cis-eQTL with INTS12 expression in various tis-
sue types and this was not observed for GSTCD nor for
any gene in strong linkage disequilibrium (LD) with
INTS12. By immunohistochemistry of fixed human sec-
tions, we have previously shown that GSTCD protein
expression was ubiquitous, whereas INTS12 expression
was predominantly in epithelial cells and pneumocytes.
During human fetal lung development, GSTCD protein
expression was observed to be highest at the earlier
pseudoglandular stage (10–12 weeks) compared with the
later canalicular stage (17–19 weeks), whereas INTS12
expression levels did not alter throughout these stages.
Although this work demonstrates potential roles of
INTS12 and GSTCD as drivers of the association signal
for lung function, much more work is required to ultim-
ately bridge the gap between the 4q24 GWA study find-
ings and how these influence lung function. A separate
gene our research group has actively studied is the lung
function and COPD associated serotonin receptor,
HTR4. We identified that the protein level of HTR4 in-
creased throughout lung development; however HTR4
was expressed only at very low mRNA and protein levels
in adult lung [50], again suggesting a potential role in
lung development.

Models to study candidate lung function/COPD genes:
new approaches
As we have noted, although GWA studies have been
successful at detecting genomic loci harbouring vari-
ants predicting variation in lung function measures and
risk of COPD, these genetic associations are usually
limited to identifying fairly broad genomic regions and
are incapable of distinguishing causal variants from
non-causal variants [93]. Therefore despite the unpre-
cedented success of GWA studies, the therapeutic and
functional translation of these studies is still in its in-
fancy. There are a number of experimental approaches
and models that may be used to functionally translate
genetic findings. These methods can help in dissecting
the genetic association signals for the currently consid-
ered respiratory phenotypes and identify underlying
alleles and biological pathways that are important in

lung function and COPD. Computational methods can
be used to combine experimentally generated regulatory
information of the human genome, such as ChIP-seq
(chromatin immuno-precipitation sequencing) generated
binding sites or gene expression Quantitative Trait Loci
(eQTL), with respiratory loci [93, 94]. The classical
scheme of following up GWA study associations concen-
trates on manipulation of single genes (for example gener-
ating transgenic mice which have the gene deleted or
overexpressed) but this method is inevitably slow. How-
ever, given genetic association data suggests the presence
of a multitude of gene variants on different chromosomes
predicting the disease risk or lung function measure out-
come [7, 19, 36, 95, 96]. Recently, the development of the
CRISPR-Cas9 activation system, which allows simultan-
eous enhancement of endogenous expression of multiple
genes, may speed up functional follow up of key genetic
variants [97]. Additionally, enhancing endogenous gene
expression from a natural promoter is more likely to re-
capitulate the splicing complexity than the traditional
transient or stable recombinant DNA transfection ap-
proach [97]. RNA interference (RNAi) gene silencing has
successfully been used to knock down genes of interest
and following downstream analyses, novel gene functions
have been identified. However, with RNAi-based ap-
proaches, the data requires in depth complex analysis.
Ideally, more than one siRNA or shRNA could be utilised
due to the degree of false positive observations, which
may obscure true results with off-target silencing effects
[98]. This limitation can also be addressed with the advent
of CRISPR and TALEN gene editing technology which al-
lows generation of specific gene knock-out cells with the
potential for several individual gene knock-outs in combin-
ation [99]. Of note, decreases in the cost of next generation
high-throughput sequencing has addressed a number of
limitations faced by microarray-based approaches and
allows effective discovery of biological pathways under-
pinning respiratory phenotypes, for example by RNA-
sequencing and CHIP sequencing approaches [100]. This
information could be used to make informed decisions
about relevant cellular assays post genetic manipulation.
Investigating respiratory phenotypes in lung tissue from
specific gene knockout mice is also a valuable in vivo ap-
proach that can effectively complement in vitro work [101].

Conclusions
In conclusion, recent advances in large GWA studies
and meta-analysis of results obtained across different
studies has led to the identification of a large number of
loci which predict lung function variability. An increas-
ing number of these loci have also been demonstrated to
show association with COPD risk per se. However, des-
pite these advances, only a small proportion of the vari-
ability in lung function can be explained by the genetic
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variants described to date. This suggests many other var-
iants are yet to be uncovered which may also contribute
to the genetic basis of airflow obstruction. It is notable
that many of the genetic regions which have been identi-
fied to date harbour genes which play an important role
in lung development. Whether or not this means these
genes are less likely to be useful targets for therapeutic
manipulation remains to be defined. However, there is
no doubt that understanding the role of these genes in
the regulation of lung function will be key to improving
our knowledge of the pathophysiology of COPD and
other diseases characterised by airflow obstruction.
The observation that genes associated with lung func-

tion and COPD and also showing evidence of differential
expression during lung development makes them good
candidates playing critical roles in embryological lung
development. However, more studies are warranted to
demonstrate that through carefully controlled experi-
ments SNP mutagenesis in those genes or whole gene
knockout models display effects on lung morphogenesis
or activity. If shown to be the case it would give more
credence to the ‘Dutch hypothesis’ stating that COPD
and asthma are essentially different manifestation of the
same disease process. This is because originally this hy-
pothesis was based on the observation that there is a flu-
ent development from bronchitis in youth to a more
asthmatic picture in adults which then further develops
into bronchitis among more elderly patients. Therefore
existence of genetic variants predisposing to pathobiol-
ogy of lung development may be expected under this
scenario.
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