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Abstract

chromatography—mass spectrometry (SPME GC-MS).

COPD (GOLD 1-4).

(GC-MS)

Background: Exhaled air contains many volatile organic compounds (VOCs) produced during human metabolic
processes, in both healthy and pathological conditions. Analysis of breath allows studying the modifications of the
profile of the exhaled VOCs due to different disease states, including chronic obstructive pulmonary disease (COPD).
The early diagnosis of COPD is complicated and the identification of specific metabolic profiles of exhaled air may
provide useful indication to better identify the disease. The aim of our study was to characterize the specific
exhaled VOCs by means of the electronic nose and by solid phase micro-extraction associated to gas

Methods: Exhaled air was collected and measured in 34 subjects, 7 healthy and 27 former smokers affected by

Results: The signals of the electronic nose sensors were higher in COPD patients with respect to controls, and
allowed to accurately classify the studied subjects in healthy or COPD. GC-MS analysis identified 37 VOCs, nine of
which were significantly correlated with COPD. In particular the concentration of two of these were positively
correlated whereas seven were negatively correlated with COPD. The partial least squares discriminant analysis
(PLS-DA) carried out with these nine VOCs produced a significant predictive model of disease.

Conclusions: This study shows that COPD patients exhibit qualitative and quantitative differences in the chemical
compositions of exhale. These differences are detectable both by the GC-MS and the six-sensor e-nose. The use of
electronic nose may represent a suitable, non-invasive diagnostic tool for characterization of COPD.

Keywords: COPD, Volatile organic compounds (VOCs), Electronic nose, Gas chromatography—-mass spectrometry

Background

Chronic obstructive pulmonary disease (COPD) is an in-
flammatory disease characterized by a mixture of small
airways disease (obstructive bronchiolitis) and parenchy-
mal destruction (emphysema) that causes flow limitation
(http://www.goldcopd.org/uploads/users/files/ GOLD_
Report_2014_Junll.pdf). A proper and early detection
of COPD is essential to improve the prognosis of this
progressive and debilitating disease, but although pulmon-
ary functional tests (PFTs) are mandatory in the diagnosis
of COPD, none of the derived parameters are so specific

* Correspondence: josuel78@gmail.com

'Department of System Medicine, University of Rome Tor Vergata, Via
Montpellier 1, 00133 Rome, Italy

Full list of author information is available at the end of the article

( BioMed Central

or sufficiently sensitive to detect the peripheral damage of
the small airways or the different underlined mechanisms
[1]. Moreover, it has been observed that the greater de-
cline in lung function often occurs in the moderate stage
of disease and an early intervention may reduce the pro-
gression of pathology [2, 3].

Volatile organic compounds (VOCs) are a wide class
of small organic molecules that are volatile at ambient
temperature. In exhaled breath, VOCs include several
molecular families such as hydrocarbons, compounds
containing nitrogen, oxygen or sulfur. Important compo-
nents are the byproducts of the oxidation of phospho-
lipids cytoplasmic DNA or membrane protein or can be
the result of various pathophysiological processes or
formed by bacteria [4, 5]. Under normal conditions, the
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exhaled air contains many VOCs that are both endogen-
ous, produced during the body’s metabolic processes,
and exogenous, absorbed by the external environment.
Exogenous compounds enter into the body through the
skin, inhalation or ingestion and then are metabolized,
modified by physiological processes such as the absorption
in the epithelial lining fluid of airways, and by biochemical
alteration such as oxidation processes and exhaled [4, 6].
A recent review indicates some 1840 VOCs in exhaled air
of healthy subjects [7].

The presence of inflammation and oxidative stress
alters the chemical composition of the exhaled air in
various pathologies, both in the lungs and in other or-
gans [4, 8]. In normal conditions, the lung has a very
effective anti-oxidant defensive system, but in pathological
condition such as COPD, the depletion of anti-oxidant
defenses due to the presence of excessive oxidative load
[9, 10] leads to a series of chain reactions resulting in
uncontrolled tissue destruction [11].

The study of specific compounds associated with in-
flammation in COPD is an area of vital interest and de-
serves to be further investigated. COPD has been
considered as a confounding comorbidity in lung cancer
detection studies with electronic noses [12, 13] but a
specific detection method based on the analysis of VOCs
for COPD diagnosis is not yet developed. Since the in-
flammation in COPD is mainly localized at the level of
small airways, the identification of inflammatory bio-
markers in the exhaled breath may represent a suitable
non-invasive procedure to facilitate an early diagnosis
and a better characterization of this disease [2, 14].

Nowadays, there are various techniques to study the
metabolic profile of exhaled air, and those that are most
commonly used are the gas chromatography, the gold
standard for air analysis, and the arrays of gas sensors
usually called electronic noses [15].

Electronic noses are versatile instruments typically
portable, based on arrays of partially selective gas sen-
sors system. Electronic noses can typically detect a large
spectrum of VOCs to provide a discrimination among
samples classified according to their chemical compos-
ition [16]. Among a manifold of other applications, some
electronic noses have been used to differentiate healthy
subjects from patients affected by various diseases [15].
In combination with other “omics” platforms, the elec-
tronic nose could contribute to exploit the knowledge
about biomarkers of lung inflammation, respiratory dis-
eases and to characterize different phenotypes, providing
important information to personalize drug treatment
and facilitate the development of new drugs [17].

Electronic noses may provide information about the re-
spiratory profile characterized by a set of various VOCs,
but they do not provide specific information about the
individual molecules. To identify the compounds
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present in the exhaled air it is necessary to use different
techniques based on a detection mechanism able to
separate the different compounds in the mixture. GC-MS
is certainly the most widely used of these instruments, in
particular complemented by solid phase micro-extraction
techniques [18].

The main objective of this study was to validate the
COPD detection capability of an electronic nose that is
successfully used for the detection of lung cancer. The
study has been complemented by the GC-MS analysis of
the breath samples in order to identify some VOCs that
could be specifically connected to COPD.

Methods

Study population

We assessed 7 healthy subjects (control population) and
27 outpatients with diagnosis of COPD (post-broncho-
dilator FEV/FVC <70 %, GOLD stage 1-4) managed at
Pulmonary Disease Outpatient Clinic of Tor Vergata
Hospital, Rome. The control population was represented
by healthy never-smoker subjects with normal respira-
tory function values, and negative history for respiratory
disease, further significant diseases, or allergy. All COPD
patients were former-smokers (abstinent for at least
6 months) with a smoke history > 10 pack/year (P/Y), in
a stability phase of the disease, as defined by ATS/ERS
guidelines [19]. Active smokers, patients with a history
of asthma, allergic rhinitis, atopy, a high eosinophil
count, or a recent respiratory tract infection were ex-
cluded from the study. Patients in regular treatment with
inhaled corticosteroids were required to discontinue the
drugs for two-weeks before collecting the exhaled air.
All the procedures have been performed according to
Declaration of Helsinki (http://www.wma.net/en/30pub-
lications/10policies/b3/).

Pulmonary function tests

All the studied subjects performed pulmonary function
tests (PFTs) such as spirometry by pneumotachograph
and static pulmonary volumes measured by body pletis-
mography. Every patient was under regular treatment
with long-acting bronchodilators, therefore PFTs were
performed after 24 h (therapy with long acting bronchodi-
lators) or 48 h (therapy with once daily bronchodilators)
since last inhalation of the drug. PFTs were performed
with automated equipment (Master Screen Body PFT
Jaeger, Wiirtzburg, Germany), according to current recom-
mendations of the ATS/ERS Task Force on standardization
of pulmonary function tests [20, 21].

All study participants were asked to abstain from
food or drink for 2 h before collecting exhaled air, in
order to reduce any factors that could interfere with
the composition of exhalation profiles of VOCs. All
samples were collected in the same two-hour time slot
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(2—4 pm), in order to limit the circadian variation in
the breath composition.

Exhaled air collection

A simple sampling protocol was developed to collect the
first 500 ml of exhaled breath in a disposable Tedlar bag
(SKC) [22]. Participants were asked to wear a nose clip,
to inspire deeply to total lung capacity (TLC), to hold
the breath for 5 s, and then to expire slowly and max-
imally. The collecting system was composed by a
mouthpiece inside which the subject exhale, a T-valve
and connectors in Teflon, that allows to direct the first
portion of exhaled air (500 ml) inside the gas sampling
bag. The sampling bag is filled until the resistance to
further loading is sufficient to close the valve. The
breath sampler is characterized by a low resistance and
the breath can be easily collected even from people with
reduced pulmonary functionality.

Analysis of exhaled air
The analysis of exhaled air was carried out by an elec-
tronic nose and GC-MS as previously described [12].

The electronic nose was the latest version of the in-
strument designed and developed by the Sensors
Group at the Department of Electronic Engineering of
the University of Rome Tor Vergata. It is composed by
an array of quartz microbalances (QMB), each coated
by a different metalloporphyrin. Each QMB is con-
nected to an electronic oscillator. VOCs are reversibly
adsorbed to the metalloporphyrin layers changing the
resonant frequency of the QMBs. The shift of fre-
quency between before and during the exposure to the
sample is the sensor response. This electronic nose is
applied to breath analysis for the diagnosis of respiratory
diseases such as lung cancer [23] and asthma [24]. Six
sensors were used in the experiments here described.
The sensors were coated with the same 5,10,15,20-tetra-
kis-(4-alkyloxyphenyl) porphyrins but complexed with six
different metals: cobalt, zinc, manganese chloride, iron,
tin, and chromium.

Within 10 min of completing the collection of expired
air, the sampling bag was connected to the electronic
nose. To mitigate both environmental interferences
and memory effects, the sensors were exposed to short
time pulses of the sample according to a methodology
described elsewhere [25].

The GC-MS used in this experiment was a Shimadzu
QP 2010. The sample for the GC-MS analysis was ob-
tained with the solid phase microextraction (SPME)
technique. A DVB/CAR/PDMS (Divinylbenzene/Car-
boxen/Polydimethylsiloxane) 50/30 pg triphasic fiber
from Supelco was used. The SPME was kept 2 h in
contact with the sampled breath. The analytes adsorbed
in the fiber were thermically desorbed in the injection
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port of the GC at an inlet temperature of 250 °C. The
GC setup began with an initial oven temperature of
40 °C for 2 min. The temperature was then ramped at
10 °C/min until it reached 300 °C, and it was held at
300 °C for 2 min. Mass spectra was obtained by elec-
tron ionization, and the reconstructed chromatograms
were acquired in the full scan mode in the mass range
m/z 40-250. The identification of the peak was carried
out with the NIST127 and NIST147 libraries.

Statistical analysis

Thirty-four subjects (27 COPD patients and 7 controls)
were studied, for a total of 34 measurements with the
electronic nose and 34 measurements with the GC-MS.
If not different indicated, all the values are expressed as
mean and 95 % interval confidence (IC).

The measurements collected with electronic nose were
used to create a classification model by using partial
least squares discriminant analysis (PLS-DA) algorithm
aimed at identifying the breath of COPD affected indi-
viduals from the healthy control group. The PLS-DA
model was validated by leave-one-out cross-validation
(LOOCYV) [26].

The correlation between the dependent variables
(healthy or sick) and predictors (VOCs identified with
the GC-MS) was indicated by the Pearson correlation
coefficient r. For all the statistical analysis a P value < 0.05
was considered significant.

GraphPad Prism (CA, USA), SPSS (Chicago, IL, USA)
and Matlab (MathWorks Inc. Natick, Massachusetts,
USA) software were used for the statistical analysis.

Results

The measurements were carried out on a population
composed by 7 healthy controls and 27 patients affected
by COPD (GOLD obstruction stage 1-4). The anthropo-
metric characteristics of the studied population are re-
ported in Table 1, the average BMI of COPD subjects
was 28.4 Kg/m?> (26.2—-30.5), just a patient had a BMI
lower than 21. COPD population was formed by former
smokers, with a mean smoke history of 41 (33-49) P/Y.
The mean number of exacerbations during the previous
year was 1.18 (0.84—1.53), and 8 out of the 27 patients
were frequent exacerbators (>2 exacerbations in the

Table 1 Anthropometric characteristics of studied subjects

Healthy COPD
Sex F4 M3 F3 M24
Age (yrs) 27 (25-29) 72 (69-74)
Weight (Kg) 80 (71-89) 79 (72-86)
Height (cm) 173 (166-179) 167 (164-171)
BMI (Kg/m?) 275 (23.6-314) 284 (26.2-30.5)

All the values are expressed as mean and 95 % confidence interval
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previous year) (29.62 %). In Table 2 are listed the values
of the respiratory function of the COPD patients.

Electronic nose

The magnitude of the frequency shift (Hz) of the signal
of each sensor significantly correlated with the presence
of COPD (Pearson correlation; sensor 1: 0.41, P=0.01,
sensor 2: 0.58, P <0.001, sensor 3: 0.51, P < 0.001, sensor
4: 0.54; P=0.001, sensor 5: 0.53, P=0.001, sensor 6:
0.534, P=0.001).

Figure 1 shows the average and the standard deviation
of the sensors signals for healthy and COPD patients.
Among COPD patients, the sensors signals do not cor-
relate with FEV;, RV and TLC.

A cross-validated PLS-DA model aimed at classifying
the breath according to the COPD was calculated from
the electronic nose data. The cross-validation error was
minimized by a model with three latent variables. In
Fig. 2 the first two latent variables are plotted to provide
a simple visualization of the electronic nose capability to
separate healthy and COPD group.

The cross validated model provided the correct classi-
fication of 26 of 27 COPD patients and 5 of 7 control
subjects. Thus, the sensibility of the test resulted of
96 %, the specificity of 71 %, and negative predictive
value (NPV) of 83 %, corresponding to 1 false negative,
while the positive predictive value (PPV) was 93 %, cor-
responding to 2 false positives. The diagnostic accuracy
of the test was 91 %. A similar classifier model aimed
at separating the breath of frequent exacerbators (=2
events) from infrequent exacerbators (<1 event) did
not provide satisfactory results.

Gas chromatography — mass spectrometry (GC-MS)

The analysis of the GC-MS data provided the identifica-
tion of 37 VOCs from the chromatograms of the exhaled
breath of the studied population. Overall, nine VOCs
were significantly correlated with COPD: two of these
were positively correlated with COPD (Pearson Correlation:
0.35 £ 0.01; P <0.05), whereas seven VOCs were negatively
correlated with COPD (Pearson Correlation: —0.43 + 0.01;
P <0.01) Table 3. The compounds correlated with COPD
are reported in Fig. 3. In COPD subjects, the decane and 6-
ethyl-2-methyl-decane were found at larger abundance in

Table 2 Respiratory function values of COPD patients

Healthy COPD
FEV: % 98 (93-103) 55 (49-61)
FVC % 99 (96-103) 83 (77-88)
FEV1/FVC % 75 (73-77) 51 (46-56)
RV % 103 (99-107) 149 (133-166)
TLC % 104 (99-108) 108 (101-116)

All the values are expressed as mean and 95 % confidence interval
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Table 3 Volatile organic compounds (VOCs) positively and
negatively correlated with COPD

Compounds negatively correlated
with COPD

Benzene, 1,3,5-tri-tert-butyl-

Compounds positively correlated
with COPD

Decane

Butylated hydroxytoluene Decane, 6-ethyl-2-methyl-
Hexane, 3-ethyl-4-methyl-

Hexyl ethylphosphonofluoridate

Limonene

1-Pentene, 2,44-trimethyl-

2-Propanol

the frequent exacerbators in comparison to infrequent
exacerbators, although this variation is not statistically sig-
nificant (Fig. 4). VOCs did not correlate with FEV1.

Discussion

This study provides evidences that the differences in the
breath of control and COPD groups are sufficiently
different to be captured by the Tor Vergata electronic
nose. Furthermore, the GC-MS identified 9 VOCs
whose relationship with the COPD is worth of further
investigations.

In this study two different groups were included: a
clinically relevant group and an asymptomatic one. Ac-
cording to the current guidelines for evaluating diagnos-
tic accuracy, the first step in the assessment of a novel
test has to evaluate the discriminative ability between a
priori defined, gold standard diseased and non diseased
subjects [27-29]. As can be seen from Table 1, controls
and COPD subjects differs in age and smoking history.
Although this difference does not allow extending our
results to a general population of smokers and non-
smokers of a similar age, definitely it gives two clear
indications for further analysis.

Our findings are consistent with the results obtained by
Incalzi et al. although the different e-noses used (a six-
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sensor system in our study instead of the seven-sensor sys-
tem used by the other Authors) [30]. In both study the
VOC patterns were different between healthy and COPD
subjects. The authors have showed that VOC pattern
was highly reproducible in healthy subjects and in more
severe hypoxemic COPD population (GOLD 1V), but
less in mild — moderate COPD patients. They explained
this different reproducibility to a greater variability of
the less severe COPD population in comparison to se-
vere COPD [30]. In this study the reproducibility of the
e-nose was not evaluated, but differently from the
Incalzi RA et al., we have integrated the VOC pattern
with the analysis of exhaled gases. With both methods
(e-nose and GC-MS) was possible to differentiate
health subjects from COPD. Moreover, the difference
VOCs concentration between populations as detected
by the GC-SM is the possible cause of a different VOCs
pattern found with the e-nose in COPD subjects.

In this study GC-MS allowed to identify 7 compounds
negatively correlated with COPD and 2 positively corre-
lated with this disease. Decane and the 6-ethyl-2-methyl
decane, the compounds that positively correlated with
COPD, are alkanes that belong to the broader class of
hydrocarbons. In previous studies, the analysis of ex-
haled air with the GC-MS has identified increased levels
of decane [31] and its derivatives [32] in subjects with
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COPD [33] and lung cancer [34], compared with healthy
subjects. In our patients, the levels of decane and 6-ethyl-
2-methyl decane were increased in frequent exacerbators
COPD [35, 36] compared to non-frequent exacerbators,
and in the latter group compared to healthy subjects.
However, these increases were not statistically significant,
likely because of the small number of the enrolled pa-
tients, especially in the group of frequent exacerbators.

Seven compounds were significantly increased in healthy:
limonene; butylated hydroxytoluene (BHT); 2-propanol;
benzene, 1,3,5-tri-tert-butyl-; hexane, 3-ethyl-4-methyl-;
hexyl ethylphosphonofluoridate; and 1-pentene, 2,4,4-
trimethyl-.

Limonene is a cyclic monoterpene. It is an essential oil
that is mostly found in citrus fruits and in high concen-
trations in fruit juices and is also used as a food additive,
and in a variety of products for personal care such as
perfume and creams [37]. This compound is frequently
detected in exhaled air of healthy subjects, [38] and in-
creased levels have been detected in exhaled breath of
patients with chronic liver disease [37]. Food is indicated
as a possible source of limonene in the airways [37].
Since limonene is an antioxidant, its low levels found in
patients with COPD could be explained by its consump-
tion in presence of oxidative stress. However, a previous
work did not report statistically significant differences
between the levels of limonene in exhaled breath of
healthy subjects and patients with cystic fibrosis [39].

BHT is an alkylated phenol and an exogenous antioxi-
dant. An in vitro study has shown that both BHT and N-
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acetylcysteine attenuated the secretion of tumor necrosis
factor-a (TNF-a) and mRNA expression of TNF-a in
the lungs of lung transplant recipients [40]. BHT is an
exogenous antioxidant and for its properties is used as a
food additive in the cosmetics industry, in the pharma-
ceutical industry [41], in petroleum products, in the rub-
ber and plastics industry, and is also detected in the air
of indoor environments [42, 43]. Since it is not endogen-
ously produced, it is a “contaminant” of the airways. We
detected BHT in the airways of healthy subjects and it
was absent in all patients with COPD. This finding may
indicate that the high levels of oxidative stress present
in COPD patients have resulted in a depletion of BHT
or rather its catabolization into another compound. In
literature, the only work in which was measured BHT
regards the determination in subjects suffering from
lung cancer, but it was not reported if the difference
with healthy was significant [44]. As for limonene, the
levels of exhaled BHT could be influenced by nutri-
tional habits.

The 2-propanol (or isopropyl alcohol) is widely used
in industrial and consumer products. It is used as a dis-
infectant, as a solvent in the manufacture of products
for hair and skin, such as antifreeze agent in the carbu-
retors, and it is present in the windshield wipers of cars
and in cleaners for contact lenses. The main metabolite
of 2-propanol is acetone that is produced through the
oxidation process by liver alcohol dehydrogenase (ADH).
Acetone is removed from the body through the kidneys
and the exhaled air. Acetone can be further metabolized
to acetate, formate, and finally to carbon dioxide [45]. In
a study 2-propanol was detected in the breath of all 39
healthy subjects evaluated [38]. Increased levels of 2-
propanol, respect to healthy were reported in lung can-
cer [46] and in liver disease [47]. Since the 2-propanol
can be oxidized with the formation of acetone, there is a
close relationship between the levels of the two com-
pounds in exhaled air [48]. The GC-MS method here
adopted did not allow for the detection of acetone and
therefore it is not possible to ascertain whether a greater
amount of 2-propanol was converted into acetone in
COPD subjects.

To the best of our knowledge, no data are reported in
the literature concerning the other four compounds whose
abundance we found larger in healthy subjects: benzene,
1,3,5-tri-tert-butyl-; hexane, 3-ethyl-4-methyl-; hexyl
ethylphosphonofluoridate; and 1-pentene, 2,4,4-trimethyl-.

Further researches are needed to clarify the metabolic
pathways of formation and the role played by these VOCs.
However, although the mechanisms of generation and
elimination of some VOCs are not yet fully understood,
and none of the individual compounds was specific for
COPD, the overall analysis of VOCs adds a valuable con-
tribution to diagnose and characterize the disease.
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A limit of our study is represented by the difference in
age between the two studied populations, since the
healthy subjects were younger than COPD patients.
However, it has been shown that VOCs pattern in ex-
haled air is not different between healthy young and
healthy elderly [49]. However, we cannot exclude the
possibility that age-related differences may alter the
profile of the exhaled air in presence of a disease [50].
Although this study found a peculiar fingerprint in
COPD in comparison to healthy subjects and some
VOCs were correlated to the disease, more studies and
a larger population are needed to translate these results
into clinical practice. Moreover, subjects were re-
strained for food, but it was not standardised the
carbohydrate intake. Another limit of our study could
be that the analysis of VOCs has been done from the
first 500 ml of exhaled air. Normally, the first 125-150 ml
of exhaled air derive from dead anatomical space. The
next volumes of air derive from peripheral airways and
alveolar compartments. Our objective was to analyze
the air from small airways and alveoli, therefore from
the site of inflammation in COPD. More laborious
methods to collect exhaled air might include the elimin-
ation of the breath portion in contact with upper airways,
while in this paper we preferred to use a more simple and
reproducible method.

Conclusions

This study indicates that COPD patients exhibit qualita-
tive and quantitative differences in the chemical compo-
sitions of exhale. These differences are detectable both
by the GC-MS and the six-sensors e-nose. The use of
electronic nose may represent a suitable, non-invasive
diagnostic tool for characterization of COPD, although
further studies are needed.
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